論述了氣固相光催化反應(yīng)器的特點、類型及研究現(xiàn)狀。根據(jù)反應(yīng)器的結(jié)構(gòu),氣固相光催化反應(yīng)器分為固定床和流化床,主要介紹了國外近年來流化床光催化反應(yīng)器應(yīng)用于廢氣處理中的研究進展情況,闡明了新型流化床光催化反應(yīng)器的研究與設(shè)計是光催化氧化法工業(yè)化過程中需要解決的關(guān)鍵問題之一,分析了其存在的問題,并對今后的發(fā)展方向進行了展望。
隨著能源價格的持續(xù)上漲和環(huán)境污染的日趨嚴(yán)重,半導(dǎo)體光催化污染治理技術(shù)近年來日益受到人們的重視 [1]。該技術(shù)具有工藝簡單、能耗低、無二次污染和降解*的特點。因為半導(dǎo)體受一定能量光照射而產(chǎn)生的光生空穴和電子具有很強的氧化性和還原性,可以無選擇的將半導(dǎo)體顆粒表面的吸附物氧化還原為CO2和H2O。國內(nèi)外有關(guān)光催化降解水中有機污染物的研究已有十余年歷史,近幾年來,隨著對低濃度(μg/m3)揮發(fā)性有機物(VOCs)所帶來的空氣污染問題的重視,人們認(rèn)識到氣固相光催化處理VOCs的潛在優(yōu)勢,開始了這方面的研究。氣固相光催化反應(yīng)器是光催化過程的核心設(shè)備,它的設(shè)計和應(yīng)用勢必成為氣固相光催化研究的主要方向之一。由于流化床具有傳質(zhì)效率高、操作范圍寬、易實現(xiàn)工業(yè)化等特點,近年來出現(xiàn)了氣固相流化床光催化反應(yīng)器的研究熱潮。本文總結(jié)了國外近年來廢氣治理中氣固流化床光催化反應(yīng)器的研制及應(yīng)用情況,并對其發(fā)展趨勢進行了展望。
1 氣固相光催化反應(yīng)器的特點
光催化反應(yīng)器與傳統(tǒng)反應(yīng)器的不同之處在于需要有光源的存在,因此它的設(shè)計更加復(fù)雜,除了考慮傳統(tǒng)的反應(yīng)器所涉及的如質(zhì)量傳遞和混合、反應(yīng)物和催化劑的接觸、流動方式、反應(yīng)動力學(xué)、催化劑的安裝、溫度的控制等問題外,還要考慮光能在反應(yīng)器內(nèi)的傳播與均勻分布,因為只有吸收了適當(dāng)?shù)墓庾佣患せ畹拇呋瘎┎啪哂写呋钚?。另外,光強的選擇也極為重要,它對光催化反應(yīng)的影響隨反應(yīng)物的不同而有所不同。但通常在較低光強下反應(yīng)速率與光通量呈一級反應(yīng),在較高光強下反應(yīng)速率為半級,即光效率隨光強增加而下降。光催化反應(yīng)器的反應(yīng)能力受照射光分布和光強的影響這些特性給光反應(yīng)器的理論分析、實驗研究和工業(yè)化應(yīng)用均帶來了困難,多相體系中固體催化劑的存在更增加了問題的復(fù)雜性。
根據(jù)相態(tài)的不同,光催化反應(yīng)器可分為氣固相光催化反應(yīng)器與液固相光催化反應(yīng)器。與液固相相比,氣固相光催化反應(yīng)器通常需要在高氣體體積流量下操作[2],要求有很好的氣密性,同時要便于物料的裝卸;需要固定化的催化劑,若使用粉末催化劑,只能造成氣阻增大,催化劑流失嚴(yán)重或分散不均等不利情況而影響。
整個光催化效果(但一般認(rèn)為光催化劑固定后比表面積減小,其催化效率有所降低)。兩者的相同點是,都需要實現(xiàn)反應(yīng)物、催化劑與入射光的充分接觸,這可以通過改善反應(yīng)器中光的分布和提高催化劑的比表面積的方法來實現(xiàn)。氣固流化床光催化反應(yīng)器的研究進展
2 氣固相光催化反應(yīng)器的研究現(xiàn)狀
半導(dǎo)體多相光催化反應(yīng)的zui早研究可追溯到1972年日本科學(xué)家Fujihims和Honda發(fā)現(xiàn)在近紫外光(380nm波長的光)的作用下,金紅石型TiO2單晶電極能使水在常溫常壓下連續(xù)分解為氫氣和氧氣。其在環(huán)保中的應(yīng)用則始于1976年加拿大科學(xué)家John H. Catey等將TiO2光催化應(yīng)用于劇毒多氯聯(lián)苯降解的研究。氣固相光催化氧化技術(shù)至今未能工業(yè)化的一個zui主要原因是光反應(yīng)器的缺乏。目前,開發(fā)結(jié)構(gòu)簡單、反應(yīng)效率高的新型光反應(yīng)器已成為氣固相光催化技術(shù)的一個重要研究方向。
氣固相光催化反應(yīng)器根據(jù)結(jié)構(gòu)可分為固定床和流化床兩種類型。固定床結(jié)構(gòu)簡單,易于操作,隨處理程度不同可一次性或回流循環(huán)處理。有關(guān)固定床光催化反應(yīng)器的研究較多,出現(xiàn)了多種反應(yīng)器類型,如間歇式反應(yīng)器[3,4]、光導(dǎo)纖維反應(yīng)器(OFR)[5,6]、環(huán)形反應(yīng)器[7-9]、管狀反應(yīng)器[10-13]和整體構(gòu)造反應(yīng)器(即蜂窩狀反應(yīng)器)[14]等。
流化床的結(jié)構(gòu)相對復(fù)雜,操作中需要滿足壓降小、高氣速的要求,過程不易控制,因此研究難度較大,報道得較少。然而,流化床可改善傳質(zhì)條件,提供光對顆粒的連續(xù)照射,提高催化劑表面積與反應(yīng)器容積之比,可通過調(diào)節(jié)載體膨脹率提高光的透射率。與固定床的比較研究表明[15,16],流化床比固定床能更好地實現(xiàn)反應(yīng)物、催化劑與入射光的充分接觸,提高光催化效率。并且,由于流化床極大的改善了污染物與催化劑的傳質(zhì)條件,比固定床更適合于處理較高濃度的有機廢氣。流化床的這些優(yōu)點已逐漸引起了人們的注意,為使氣固相光催化反應(yīng)實現(xiàn)大規(guī)模的工業(yè)化應(yīng)用,流化床光反應(yīng)器的研制和開發(fā)勢在必行,國內(nèi)外已有不少研究人員投入了該項工作,并取得了不菲的成績。
3 氣固流化床光催化反應(yīng)器
氣固流化床光催化反應(yīng)器與其它工業(yè)流化床所不同的是:(1)在反應(yīng)器中安裝有人工紫外光源;(2)流化床中流態(tài)化顆粒表面負(fù)載有二氧化鈦光催化劑(由于粉末二氧化鈦容易粘附聚結(jié),流態(tài)化性質(zhì)不好,所以常將二氧化鈦負(fù)載在易流態(tài)化的顆粒表面)。根據(jù)流化床的光源內(nèi)置和外置的不同,為使光、氣、固充分接觸,流化床可采用不同的幾何形狀,但目前,氣固流化床光催化反應(yīng)器主要限于實驗室研究,因此多為“二維"流化床的形式。以下是近年來國外采用的幾種用于氣固相光催化反應(yīng)研究的流化床類型。
3.1 平板流化床光反應(yīng)器
平板流化床光反應(yīng)器采用外置光源,由兩個透光性能好的平板玻璃或塑料等垂直安裝制成,兩板間有一小間隔(一般為幾個毫米)。半導(dǎo)體催化劑負(fù)載于顆粒狀載體表面,裝填于床中,由床層底部的多孔布?xì)獍逯危瑫r混合有反應(yīng)物的氣流經(jīng)布?xì)獍暹M入反應(yīng)器使催化劑顆粒流態(tài)化,紫外光源垂直照射于反應(yīng)面。這種反應(yīng)器較易觀察催化劑顆粒的運動、氣流路徑和氣泡性質(zhì),而且結(jié)構(gòu)簡單,制作容易,在研究中使用較多。
D. Iatridis[17]等在平板流化床中進行了光能吸收的研究,分析了透光系數(shù)和反射系數(shù)與反應(yīng)器參數(shù)之間的關(guān)系。該反應(yīng)器用高純度氮氣作載氣,使催化劑顆粒流態(tài)化。采用氙光燈作光源,經(jīng)過光柵,篩選出波長為560nm±4nm的光,再通過透鏡,使光線平行,經(jīng)累計球,照射于反應(yīng)器,照射面積為3mm×6mm。研究表明,平均透光系數(shù)隨床層膨脹高度和顆粒直徑的平方根的增加而增加,隨床層厚度的增加而減??;相反,平均反射系數(shù)隨床層高度和顆粒直徑的增加而減小。
Dibble L.A.等[18]采用小試平板流化床進行了濕氣流中三氯乙烯(TCE)的光催化氧化研究。TCE的穩(wěn)態(tài)轉(zhuǎn)化率達(dá)到0.8μmol(TCE).g-1(ca.).min-1,量子效率高達(dá)13%。研究表明,該流化床提供了紫外光、TiO2/SiO2催化劑和氣相反應(yīng)物之間、連續(xù)的接觸,并能快速對進氣氣速、反應(yīng)物組分和光子流的改變做出反應(yīng)。
Satoru Matsuda等[19]采用超細(xì)TiO2顆粒二維流化床光催化處理NOX。反應(yīng)器器壁為2mm的耐熱玻璃,反應(yīng)區(qū)截面為2mm×70mm。擴大段高230mm,頂端截面為50mm×70mm,以防止顆粒被氣流攜帶出去。采用1mm的玻璃珠作氣體分布器,UV燈外部照射,為防止紫外光散失,整個裝置置于一黑箱中。研究所用TiO2顆粒粒徑分別為7,20和200nm,實驗結(jié)果表明,催化劑粒徑越小,比表面積越大,粘著力也越大,因此聚團流化時不易破碎。用其處理NOX的研究發(fā)現(xiàn),NOX的去除與催化劑比表面積成比例,即催化劑粒徑越小,NOX的去除率越高,說明了該過程受反應(yīng)的限制。
3.2 振動流化床光反應(yīng)器
振動流化床光反應(yīng)器將振動裝置與流化床相結(jié)合,通過外部振動能量使顆粒催化劑流態(tài)化,因此與其它流化床相比,具有在低氣速下操作和防止催化劑顆粒聚結(jié)的優(yōu)點,且更適于處理較高濃度的有機廢氣。
Alexander V. Vorontsov等[16]采用此裝置進行了相同操作條件下流化床與固定床光催化降解丙酮的比較研究。該反應(yīng)器為圓柱形不銹鋼體,長7.6cm,內(nèi)徑3.8cm,頂端UV燈光透過耐熱玻璃窗射入反應(yīng)器,用“O"型聚四氟乙烯(Teflon)墊圈密封住光的入口。反應(yīng)器底部四個入口彼此成90度,出氣口位于反應(yīng)器上部,在出入口處放置玻璃纖維以防止催化劑隨氣流流失。反應(yīng)器底部由聚四氟乙烯膜、間隔段和擴音器組成,擴音器的正弦振動由振蕩器和放大器獲得,以實現(xiàn)振動流態(tài)化。經(jīng)與固定床粉末、粒狀及薄膜狀二氧化鈦的催化效率比較,結(jié)果表明,催化劑的量子效率的順序為:振動顆粒流化床(8.7%)>顆粒固定床(6.9%)>粉末或膜固定床(5.8%)。不考慮外部傳質(zhì)的影響,流化床中顆粒的自由運動,造成了光的間歇照射,同時均勻照射量增加,散射光也被大量吸收,從而提高了光的利用率,獲得了很好的處理效果。粒狀催化劑因造粒過程中提高了TiO2的機械活性(產(chǎn)生了更多的有效反應(yīng)表面),增加了吸光量而使其優(yōu)于粉末和膜催化劑。粉末和膜催化劑的處理效果相差不多,說明內(nèi)部傳質(zhì)影響可以忽略。
此外,與平板流化床的比較發(fā)現(xiàn),振動流化床在進氣量20cm3/min,丙酮濃度500ppm時,可達(dá)到45%的轉(zhuǎn)化率。而Dibble等[18]采用平板流化床處理TCE時,在相似的光強和轉(zhuǎn)化率下,僅可處理TCE的進氣濃度為67ppm。氣固流化床光催化反應(yīng)器的研究進展
3.3 改進的二維流化床光反應(yīng)器
Tak Hyoung Lim等[15]采用改進的二維流化床光反應(yīng)器對NO的光催化降解進行了研究。這種反應(yīng)器是環(huán)型的,大的石英外管(徑30mm,高400mm)中心放置小的石英內(nèi)管(徑20mm,高375mm),環(huán)的厚度為5mm,此即為反應(yīng)區(qū),內(nèi)裝TiO2/SiO2復(fù)合催化劑。布?xì)獍宀捎?00目孔的石英過濾器,使催化劑能均勻流動。整個反應(yīng)器周圍裝有一個平面鏡箱,以防止光輻射的損失,提高反射光與折射光的利用率。研究表明,當(dāng)表觀氣體流速達(dá)到其zui小流化速度(umf)的1.3倍時,光透射率隨床空隙度呈指數(shù)增加,在氣速2.5umf時NO降解率達(dá)zui大(>70%)。而Yue等[20]使用平板流化床光催化合成氨的zui大值出現(xiàn)在氣速1.8umf的時候。由此可見,二維流化床是一個的NO降解工具。與環(huán)流型光反應(yīng)器的比較表明,改進二維流化床光反應(yīng)器實現(xiàn)了復(fù)合催化劑、反應(yīng)氣與光之間的接觸,并具有良好的UV光傳遞,從而優(yōu)于環(huán)流型光反應(yīng)器。
4 展望
氣固相光催化反應(yīng)器的研究與設(shè)計是光催化氧化法工業(yè)化應(yīng)用需要解決的關(guān)鍵問題之一,已日益引起人們的重視。但總體來說,國外關(guān)于該反應(yīng)器的研究報道還比較少,主要限于實驗室研究,而國內(nèi)的研究才剛剛起步,因此氣固相光催化反應(yīng)器的工業(yè)化應(yīng)用還有許多問題需要進一步探討和研究。
(1)工業(yè)化反應(yīng)器設(shè)計要求結(jié)構(gòu)簡單、光催化效率高、可長期穩(wěn)定運行。其中提高光催化效率,就是要使光催化反應(yīng)器中的光、固、氣三相接觸達(dá)到*化。這個*化要求技術(shù)上可行,經(jīng)濟上合理。就目前流化床光反應(yīng)器的設(shè)計來說,還有許多方面需要改進,如紫外光的均勻分布、流化條件和二氧化鈦的固定方法[21]等。另外,流化床一般采用電光源,電能的消耗在經(jīng)濟上是一個很大的負(fù)擔(dān),如何建立流化床光催化反應(yīng)裝置,增大光與催化劑的接觸表面面積,提高光能的利用率也是一個尚待解決的問題。
(2)設(shè)計工業(yè)化的反應(yīng)器需要大量描述反應(yīng)器運行的動力學(xué)數(shù)據(jù)和反應(yīng)器模型。目前,實驗研究落后于理論分析,試驗數(shù)據(jù)不足以對這些模型進行驗證和考察,同時理論研究也不能夠很好地指導(dǎo)反應(yīng)器的設(shè)計,這大大阻礙了流化床光催化反應(yīng)器的研究進展。因此,迫切要求對流化床光催化反應(yīng)器進行更深入、更系統(tǒng)的基礎(chǔ)研究,如流態(tài)化、光吸收、反應(yīng)物吸附與反應(yīng)動力學(xué)之間的相互作用,以促進反應(yīng)器模擬和設(shè)計方法的建立與完善。氣固流化床光催化反應(yīng)器的研究進展
隨著我國各種相關(guān)技術(shù)的不斷提高、科技人員的不懈努力及大量研究的投入,相信氣固相光催化反應(yīng)器一定能夠從實驗室走向工業(yè)化。而流化床的應(yīng)用更能發(fā)揮光催化這種氧化技術(shù)的優(yōu)勢,使其成為一種有效的廢氣治理方法。
參考資料:杭州聚同電子有限公司 http://www.hz-jtone。。com
微信掃一掃